Blog personal de Aleix Serra. Todos los contenidos de mi creación están bajo licencia CC "by".

Y recuerda que un blog se alimenta de tus comentarios ;)

Chernobyl, 23 años después

chapa_ciencia head-news4

Mucho se ha escrito sobre Chernobyl. Sobretodo ahora, veintitrés años después. No creo que lo que verdaderamente pasó allí, sea del conocimiento general. Así pues, me permito remitiros hacia un post donde explican lo que realmente acaeció, viendo que, como siempre pasa, la realidad supera a la ficción. El relato es perfectamente entendible para quien no tenga ni idea, así que no hay excusas ;)

chernobyl

No solamente el post es impresionante, sinó que los comentarios son notablementes esclarecedores y aportan aún más, enriqueciéndolo a niveles de excelencia de post. (aquí, una excelente galería fotográfica; cuidado que es algo dura) Para los más vagos, me permito copiar y pegar en este blog el post y un par de comentarios, con todos sus links de agradecimiento. Bueno, en verdad no es para los más vagos, sinó porque realmente considero que son dos joyas que me dolería se perdiesen ya que CPI se encuentra actualmente sin continuación :P Sencillamente, MUY recomendable.

ACTUALIZACIÓN 16.03.11: He encontrado (por casualidad) el blog del comentarista “Yuri Gagarin” de Forocoches, que cito al final de este post. Su blog “La pizarra de Yuri” lo recomiendo encarecidamente (pasa a ser uno de mis intocables) y aprovecho para linkar a otro post del mismo blog donde se habla de 3 heroes anónimos en aquel acontecimiento que… igual nos salvaron a todos y ya nadie ni se acuerda (ni apenas se sabe).

También he retocado un poco los párrafos para hacerlos más legibles :)

ACTUALIZACIÓN 11.04.11: Y aquí un reciente documental emitido por “La noche temática” de Rtve2 titulado “La batalla de Chernobyl“. Como siempre ocurre en este programa, documental de obligada visualización, y en donde se adentran tanto en lo que ocurrió (que aquí se explica) como el siguiente desarrollo de toda la crisis hasta hoy en día. Imprescindible, también.

Post de CPI (Curioso pero inútil)

El texto que sigue está basado en una colaboración que hice como parte de un artículo de José Manuel Rodríguez, de Hispalibertas, quien la ha mejorado y aumentado, en el 20 aniversario de la catástrofe de Chernobyl.

El accidente de Chernobyl tuvo lugar a la 1:23:58 AM (hora local) del 26 de abril de 1986. El accidente consistió en una serie de explosiones (primero de vapor y luego de otros productos de combustión nuclear) seguidas de una fusión del núcleo del reactor. Las causas de este accidente nuclear, el mayor de la historia, se pueden atribuir al defectuoso diseño de la planta unido a la casi total ignorancia del personal sobre cómo afectaban sus acciones al funcionamiento de la planta. También hubo fallos de comunicación entre el personal de seguridad y los encargados de operación del reactor.

Ante todo, veamos someramente cómo funciona una central nuclear de este tipo: En una cámara tenemos un montón de uranio enriquecido sufriendo una reacción nuclear. Ésta consiste en la emisión de neutrones por parte de átomos de uranio. Cada vez que un átomo de uranio emite tres neutrones, libera bastante energía, en forma de calor y radiación. Este calor se utiliza para generar vapor que mueve una turbina que genera electricidad. Cada uno de los tres neutrones obtenidos de la fisión de un átomo de uranio sirve para fisionar (partir) otro átomo de uranio. Se obtiene una reacción en cadena. Es el mismo mecanismo que el de las bombas atómicas de la IIGM. Pero como no queremos una bomba atómica, se “intoxica” la reacción, metiéndole moderadores, que absorben algunos neutrones y hacen que la reacción no vaya tan rápida. Además de los moderadores (grafito en Chernobyl) hay refrigerante (agua en Chernobyl) que sirve para mantener la reacción a temperaturas fijadas y al mismo tiempo modera también la reacción.

Una central nuclar de fisión es, hablando mal y pronto, una bomba atómica a cámara lenta. Así dicho parece que es una locura, pero se conoce muy bien el mecanismo y hay múltiples medidas de seguridad que, correctamente utilizadas, hacen prácticamente imposible que ocurra nada. Sólo si se obvian varias de estas medidas de seguridad simultáneamente, como ocurrió en Chernobyl, se empieza a estar en peligro. Nunca ha habido un accidente grave cuando se cumplían las normas de seguridad.

Aquella noche, aprovechando que el reactor se iba a cerrar después para una revisión de seguridad, se iba a llevar a cabo un experimento en el reactor 4 para ver si, tras un apagón, la inercia de la turbina principal sería capaz de generar energía suficiente para activar los sistemas de emergencia (en particular, las bombas de agua). El reactor contaba con dos motores diésel para activar los sistemas de emergencia, pero éstos no se activaban instantáneamente. La prueba consistía en ver si durante los segundos que tardaban en activarse los motores la turbina podría activar los sistemas de seguridad. Ese mismo experimento ya se había hecho en Chernobyl en el reactor 1 poco tiempo atrás (aunque con todas las medidas de seguridad conectadas), siendo el resultado negativo: la turbina, por sí sola, no consiguió activar los sistemas de seguridad hasta la entrada en funcionamiento de los motores diésel. Tras una serie de modificaciones en el reactor, se quería intentar otra vez.

Antes de empezar el experimento, se redujo la potencia de funcionamiento del reactor desde los 3200 MW a 1000 MW, para realizar el experimento en condiciones menos peligrosas. Sin embargo, debido a un fallo de coordinación entre operarios, la potencia del reactor siguió bajando y llegó a estar sólo en 30 MW. A tan baja potencia, se produce un exceso de Xenon-135 (135Xe), un producto de reacción que envenena la fisión, pues absorbe neutrones. A potencias mayores, el Xenon-135 se consume en la reacción. La reacción comenzó a detenerse, pero se decidió no cancelar el experimento. Habría hecho falta un buen rato para incrementar de nuevo la potencia del reactor hasta los 1000 MW originalmente previstos. Pero no se disponía de tanto tiempo. El experimento ya iba con retraso porque durante el día habían tenido que aplazarlo durante 9 horas, debido a un pico de demanda de energía eléctrica de Kiev. Los coordinadores del experimento trabajaban bajo la presión de sus superiores. Lo que se hizo fue subir la potencia sólo hasta 200 MW. Como a este nivel sigue habiendo demasiado Xenon-135, se retiraron, más allá del límite establecido por el reglamento de seguridad, las barras de grafito (que también moderan los neutrones), para que la reacción se viese menos moderada y pudiera seguir el experimento. Dejan dentro del combustible sólo 8 de las 30 barras mínimas exigidas por el reglamento. No sólo eso, sino que también se desconectaron todos los sistemas automáticos de cierre de reacción (SCRAM) del reactor. Es un fallo gravísimo de diseño el permitir que todos los sistemas automáticos de emergencia puedan ser desconectados por los operarios. Y el experimento comenzó. Y fracasó.

En el momento de desconectar la turbina de la red, la potencia de las bombas de agua cayó rápidamente. Al cesar la llegada de agua de refrigeración, comenzó a subir la temperatura del refrigerante del reactor, que comenzó a hervir. Y aquí aparece un nuevo fallo de diseño que los operarios desconocían o, si lo conocían, no tuvieron en cuenta. El reactor de Chernobyl, del tipo RBMK (moderado por grafito) estaba supermoderado. En un reactor submoderado, una disminución de la cantidad de refrigerante provoca, por efecto doppler, una disminución de la potencia. Esto se conoce como un “coeficiente de huecos negativo”. En un reactor supermoderado, la disminución de la cantidad de refrigerante provoca un aumento de la potencia de la reacción (coeficiente de huecos positivo). Esto significa que el agua del refrigerante no sólo sirve para disminuir la temperatura del reactor, sino también para detener los neutrones de la reacción. El agua líquida absorbe muy bien los neutrones, pero no así el vapor de agua.

Cuando comenzó a evaporarse el agua del refrigerante dentro de las tuberías, la reacción comenzó a crecer descontroladamente. Se llegó a alcanzar un nivel de potencia de 30 GW, diez veces superior al establecido por las normas de seguridad. Al cabo de unos segundos, se pulsó el botón de parada total del reactor (SCRAM). Pero ya era demasiado tarde. EL SCRAM activa la entrada de todas las barras de grafito en el combustible, para detener la reacción. Pero como habían sido retiradas más allá del límite de seguridad, tardaron más de 18 segundos en entrar. La temperatura del reactor había subido demasiado, y las barras de grafito que debían introducirse en el combustible nuclear se deformaron por la temperatura, pudiendo introducirse sólo hasta un tercio de su longitud. Además, estas barras tenían una característica, de nuevo obviada por los operadores: al entrar en el combustible, provocan un aumento transitorio de la potencia, seguido por la disminución de la misma. Ese primer pico (de 100 veces la potencia nominal del reactor) ayudó a que todo ocurriera aún más rápido. El agua evaporada reventó todas las tuberías, provocando una inmensa explosión. La explosión libera toda el agua refrigerante, provocando un incremento aún mayor de la potencia, que alcanzó 480 veces el valor nominal del reactor. Además, reventó el techo del reactor, que sólo estaba parcialmente blindado, provocando la entrada masiva de aire, y con él oxígeno, que hizo arder todas las barras de grafito introducidas en el combustible.

En ese momento, una segunda explosión revienta el resto del reactor, lanzando a la atmósfera más de 8 toneladas de material radiactivo (entre 200 y 500 veces mayor radiactividad que las bombas de Hiroshima y Nagasaki), con una potencia de un billón de julios. Se ha dicho en casi todos los medios informativos que la potencia de la explosión fue 200 veces mayor que la de Hiroshima. Nada más falso. Si hubiera sido así, no habría quedado nada de la central. Lo que fue 200 veces más alto, como digo, fue la radiactividad. El núcleo del reactor se funde: se convierte en una masa radiactiva que sigue soltando cantidades inmensas de radiación y calor. La explosión provoca más de 30 incendios, que los bomberos consiguen apagar a las 9 de la mañana, con un alto precio en vidas humanas.

Más de 30 bomberos murieron ese mismo día por culpa de la radiación. Para evitar que la reacción nuclear siguiera funcionando, se emplearon helicópteros, que desde el día siguiente a la explosión, lanzaron sobre el núcleo del reactor más de 5.000 toneladas de distintos tipos de materiales. Comenzaron vertiendo 40 toneladas de carburo de boro (otro moderador), para garantizar que no se reanudara la reacción de fisión. Continuaron con 800 toneladas de dolomita a fin de extinguir el fuego y refrigerar el núcleo, y con el mismo fin añadieron 2400 toneladas de granalla de plomo. Finalmente, añadieron 1800 toneladas de arena y arcilla con el objetivo de retener los productos de fisión. Esto último falló: todavía había demasiada radiación y la arena acabó fundiéndose y cristalizando.

Posteriormente se construyó un gigantesco sarcófago, hecho con 410.000 metros cúbicos de hormigón y 7.000 toneladas de acero; el sarcófago fue terminado en noviembre de 1986. Por cierto, que ahora está lleno de grietas y toca arreglarlo, pero como es tan caro nadie se quiere hacer cargo del tema. El reactor dañado permanecerá radiactivo como mínimo los próximos 100.000 años. El accidente fue detectado el lunes 28 de abril de 1986, a las 9 de la mañana, en la central nuclear sueca de Forsmark, unos 100 kilómetros al norte de Estocolmo, donde los contadores Geiger registraban niveles de radiactividad 14 veces superiores a lo normal. Primero se pensó en un escape en la propia central (las primeras noticias de las agencias de prensa hablaban de un accidente en una central sueca), pero un exhaustivo control mostró que la central funcionaba perfectamente y que la radiactividad venía del exterior de la central.

NOTA IMPORTANTE Gente que sabe mucho de esto (¡gracias, jóvenes nucleares! -tenéis nombre de super héroes, por cierto-) aporta bastantes correcciones jugosas en el comentario nº 9. He incurrido en imprecisiones en el texto (empezando por no distinguir entre “moderar” y “absorber” neutrones) que ellos aclaran con maestría. El grueso de la secuencia de acontecimientos parece estar bien, sin embargo.

Comentario #9

Jóvenes Nucleares dice: 27 de abril de 2006 a las 10:14 am

Estimado Remo, tu explicación del desgraciado accidente es brillante, pero nos gustaría matizar un par de detalles que consideramos incorrectos en tu artículo.

En primer lugar, la energía que libera un núcleo de uranio en su fisión no se libera en forma de calor, sino de energía cinética de los neutrones y fragmentos de fisión, y son estos últimos los que producen el calor.

En segundo lugar, la reacción no se “intoxica” metiéndole moderadores, de hecho, mejora. La función de los moderadores es decelerar los neutrones hasta velocidades que maximizan las probabilidades de fisión térmica (en el Uranio 235). Por otra parte, el agua, no sirve para mantener la reacción a temperaturas fijadas, sino para extraer la energía producida. En cuanto a las barras de control, no son de grafito, sino de materiales absorbentes de neutrones, Plata, Gadolinio, Cadmio, Boro, y no moderan los neutrones en ningún momento, solamente se los “comen”. Si la reacción se “viese menos moderada” la potencia hubiese bajado, no subido. Además, lo que se moderan, ralentizan, son los neutrones, no la reacción. Por su parte, el agua líquida NO absorbe muy bien los neutrones, su misión es extraer el calor y, en su caso (agua ligera) moderar, pero nunca absorber.

Por último, se denomina efecto Doppler en las centrales nucleares al aumento de la sección eficaz de captura del Uranio 238 con la temperatura, lo cual es negativo para la reacción y positivo para la operación y control, y constituye la principal característica de diseño neutrónico del reactor. Las variaciones de la densidad del refrigerante afectan también a la criticidad, pero por motivos físicos diferentes: reducción de la moderación y aumento de las fugas neutrónicas.

Manuel Fernandez Ordoñez y José Luis Pérez (www.jovenesnucleares.org)

Comentario #47   Garvm dice: 27 de abril de 2006 a las 6:25 pm

En forocoches, un forero llamado YuriGagarin hizo una fabulosa descripción de lo sucedido.

Negativo. La secuencia de acontecimientos que condujo al accidente de Chernóbyl-4 está perfectamente documentada y estudiada; como comenté anteriormente, éste obedeció a una serie de manipulaciones negligentes del reactor de unas 40 horas de duración que culminaron en un embalamiento neutrónico de alta energía a las 01:26 de la madrugada del 26 de abril de 1986. Como veo que sale repetidamente el tema, ahí va una abreviadísima cronología de la secuencia de eventos que dieron lugar al desastre:

24.04.1986 09:00 AM – El director y el ingeniero eléctrico del grupo nº 4 de la Central Nuclear de Chernóbyl, situada en las proximidades de Pripyat (Ucrania), toman la decisión de realizar una prueba de seguridad programada a pesar de que el ingeniero nuclear responsable Grigori Medvédev se halla en Moscú dando unas conferencias. En esta decisión irresponsable pudieron confluir de manera significativa factores psicológicos organizacionales basados en el exceso de confianza y la presión, pues el grupo Chernóbyl-4 era muy moderno (2 años), estaba bien mantenido, carecía de historial de incidentes y había ganado varios premios al trabajo por tener el récord de productividad para reactores de su clase; pero por otro lado, si no la realizaban ya tendrían que esperar un año para repetirla. La idea era reducir la potencia del reactor para determinar si uno solo de los turbogeneradores automáticos era capaz de suministrar potencia suficiente a las bombas de refrigeración mientras los generadores diésel arrancaban y aceleraban, en caso de un corte local de energía.

24.04.1986 12:00 AM – En contra de la opinión de los técnicos intermedios, se inicia la prueba. Comienzan a introducir barras de moderador-grafito en el reactor para reducirle la potencia por debajo del nivel medio de seguridad [1600-1700 Mw(t)] para provocar el arranque automático del turbogenerador.

24.04.1986 14:00 PM aprox – El controlador de la red de distribución eléctrica de Ucrania llama a Chernóbyl-4 para preguntar qué ocurre. Le explican lo que hay y éste exige más energía, pues la necesita para sus operaciones normales. Mientras discuten si sí o si no, el reactor permanece casi dos horas en estado anómalo “a medio frenar”, momento en que empiezan a producirse microburbujas y contaminación por yodo en el núcleo.

24.04.1986 16:00 PM – El turno del director se aproxima a su fin. Masculla un “a la mierda” y acepta el requerimiento de los controladores de la red para devolver el grupo al 100% de potencia nominal [3.200 Mw(t)], advirtiéndoles que estén listos porque repetirán la prueba esa misma madrugada, de noche, cuando los requerimientos de energía son menores. Cuando devuelven el reactor a su potencia nominal, se producen oscilaciones leves (resultado de las microburbujas de hidrógeno y de la contaminación por yodo) de potencia térmica, a las que no se da excesiva importancia. El reactor continúa operando durante las 9 horas siguientes en un contexto anómalo, produciendo más hidrógeno y yodo. Un ingeniero nuclear habría deducido inmediatamente lo que estaba pasando, pero como no había ninguno, las leves anomalías en los indicadores se tomaron como cosa poco relevante.

25.04.1986 01:00 AM – Se inicia la prueba de nuevo. Van con retraso y desean acabar lo antes posible, así que tratan el reactor nuclear como si se tratase de la caldera de una central térmica de gas-oil (siguiendo instrucciones del director y los ingenieros eléctricos). El diseño permitía una operación mínima en torno al 22-32% de la potencia máxima. En vez de eso, la potencia se reduce al 1%, fuera de todas las envolventes y especificaciones de diseño, pese a las múltiples alarmas y advertencias del ordenador.

25.04.1986 14:00 PM – Desconectan la mitad el sistema de refrigeración del primario (4 de 8 turbobombas) para simular mejor la pérdida de potencia local. El sistema de refrigeración de emergencia del primario se dispara automáticamente. El director, mosqueado ¡ordena desactivar también el sistema de refrigeración de emergencia del reactor!!! Entonces, el ordenador dispara la alarma y se dispone a cerrar automáticamente el núcleo. En ese momento, ¡el equipo directivo ordena desprecintar el armario de emergencia y conmutar de NORMAL/AUTOMÁTICO a MANUAL/EMERGENCIA!!!. Con este acto, el ordenador pierde todo control directo sobre el núcleo, si bien seguirá disparando alarmas y notificando la ilegalidad de las operaciones hasta el último momento.

25.04.1986 14:30 PM – Cuando la potencia cae por debajo de 1600 Mw(t) (50% del nominal), el turbogenerador arranca perfectamente, seguido de los generadores diésel, aportando energía al grupo en cantidad y forma suficiente. La prueba de seguridad ha sido todo un éxito. El ordenador permanece off-line. Por tanto, el segundo cierre de emergencia del reactor que debería haberse producido al dispararse el turbogenerador tampoco ocurre.

25.04.1986 15:30 PM – El director ordena devolver el reactor a su estado nominal y abandona la sala de control. Los ingenieros eléctricos y los técnicos intermedios se disponen a hacerlo, extrayendo de nuevo las barras de moderador-grafito. Sin embargo, algo extraño ocurre. El núcleo no acelera como debiera. Uno de los ingenieros eléctricos llama al director, que vuelve a la sala de control.

25.04.1986 23:00 PM – En el momento en que sólo quedan introducidas las 32 barras de la reserva neutrónica de emergencia (que permite “reconducir” la reacción en casos así y JAMÁS se deben extraer salvo en una emergencia), la potencia del reactor es sólo del 7% del nominal. Hay preocupación. ¿Qué demonios ocurre? (Es como si pisaras el pedal del acelerador a fondo y sólo obtuvieras el 7% de potencia). Comienzan a pensar en alguna avería del cambiador de calor; no comprenden que el núcleo del reactor está herido de muerte. Lo que está ocurriendo es que, al caer por debajo de los 1.600 MW(t) fuera de sus especificaciones de diseño y sin corrección computerizada alguna, el núcleo ha empezado a producir yodo-135 en grandes cantidades, y ha caído en el llamado “pozo del yodo”. Es más: el yodo ha decaido también en forma de xenón. El núcleo Chernóbyl-4 está en esos momentos sufriendo el llamado “envenenamiento por xenón” en torno a los elementos combustibles. El xenón absorbe neutrones e impide que la reacción en cadena se produzca normalmente, lo que hace decaer la tasa de producción térmica inter-elementos de combustible. Al mismo tiempo, la central lleva 9 horas funcionando con sólo la mitad de la refrigeración del primario activa, y el sistema de emergencia desconectado. Esta carencia de refrigeración produce grandes burbujas en el agua del primario e incrementa la actividad intra-elemento de combustible (por reactividad positiva). Es decir: aunque queda flujo de refrigerante, hay elementos combustibles enteros que no están siendo refrigerados. Lejos de los sensores, en el corazón de los elementos de uranio de las barras de combustible, se viene produciendo una acumulación masiva de energía térmica no controlada ni monitorizada. Esto es: por un lado se está produciendo mucha energía dentro de los elementos combustibles (térmica y neutrónica) por falta de refrigeración suficiente, pero el envenenamiento por xenón y la presencia de grandes burbujas en el circuito impide la transferencia de esta energía al agua del circuito primario. En consecuencia, los operadores y directivos de la sala de control veían que la potencia térmica y eléctrica generada subía como el culo de mal, y no hacían más que sacar barras de moderador, inconscientes de que buena parte de toda esa energía se está acumulando en los elementos combustibles.

26.04.1986 01:00 h – El director ordena extraer las barras de moderador de la reserva neutrónica de emergencia para tratar de acelerar el reactor (obsérvese que siguen tratándolo como si fuera una caldera normal o un motor de coche ¡pí­sale, coño!!!), lo que no hace más que empeorar la situación anterior. El reactor lleva ya más de una hora por debajo de la potencia mínima crítica. Las envolturas de zirconio-niobio de los elementos de combustible comienzan a fracturarse por el calor. En esos momentos, la sala de control parece un árbol de navidad y las alarmas son ensordecedoras. El director… ¡ordena desactivarlas también!!! Esta habría sido la última oportunidad de detener el desastre, pulsando en este momento el botón de parada en frío de emergencia.

26.04.1986 01:24 h – El agua del primario entra en ebullición. Los umbrales de transferencia aérea se superan. En ese momento, los indicadores detectan un embalamiento de la potencia térmica: en menos de un minuto, el reactor pasa de un 7% de su potencia nominal a ¡un 800 %, y subiendo!!! La confusión y el miedo reinan en la sala de control. Nadie entiende qué ocurre. Un técnico intermedio, ante la evidencia de que es algo muy malo, pulsa el botón de parada en frío de emergencia (que es grande y rojo.. no es coña). Todas las turbobombas del primario entran en acción a la máxima potencia y las barras de moderador comienzan a descender.

26.04.1986 01:25 h – Los canales tecnológicos se han deformado por el calor. Por ello, las barras de moderador quedan detenidas a un 30% de inserción. Al desplazar el agua pero no completar su función, el 30% del reactor queda sumergido en una nube de vapor de agua y oxígeno e hidrógeno hidrolizados. El flujo neutrónico es ahora similar al de una bomba atómica. El xenón se quema rápidamente, lo que dispara de golpe la tasa de reacción inter-elementos.

26.04.1986 01:26 h – Se escucha una serie de pequeñas explosiones. Las fundas de zirconio-niobio han saltado en trozos y los elementos combustibles de dióxido de uranio se están fundiendo. Los topes inferiores de las barras de moderador, fabricados en acero inoxidable (un metal ferromagnético), quedan atrapados en aquella pesadilla neutrónica y se ponen a irradiar a su vez, aportando el último medio beta necesario para la catástrofe. Se produce el embalamiento neutrónico. Los canales de combustible estallan. El agua de refrigeración se transforma instantáneamente en vapor de muy alta presión (flash-boiling).

26.04.1986 01:26:30 h – La presión del vapor asciende por encima de 1.000 psi (más o menos, como a 10 o 12 metros de una bomba atómica). Las sondas y sensores están destruidos y todos los indicadores caen a cero; modelos computacionales realizados con posterioridad deducen que la potencia alcanzó entre el 10.000 y el 40.000% del nominal. Se produce una enorme explosión. La tapa superior del reactor salta como la de una olla, llevándose con ella 1.000 toneladas de protección biológica y los 1.600 tubos de presión. La pared exterior del edificio revienta y colapsa, dejando al descubierto el reactor “destapado” lleno de uranio furiosamente enriquecido y fundido. Durante muchas horas, aún los directores de la central creerán que ha estallado el cambiador de calor, y toman las medidas apropiadas para este caso… lo que no hará otra cosa que empeorar la contaminación radiactiva. No es hasta las 08:30 AM que se evidencia la explosión del reactor, cuando los niños de Pripyat están ya de camino al cole…

Esto fue lo que ocurrió en Chernóbyl-4, a grandes rasgos. La potencia de la explosión estuvo entre 1 y 4 tons, lo que produjo un efecto sísmico detectado en todo el mundo. Como podéis ver se trató de un accidente tecnológico muy complejo, resultado de una acción sostenida de sabotaje involuntario. No tuvo nada que ver con las explicaciones al respecto que suelen dar los medios de comunicación occidentales.

Post de “La pizarra de Yuri

LOS TRES SUPERHÉROES DE CHERNOBYL

Puede que salvaran a millones de personas sacrificando sus vidas, y ya nadie se acuerda.

Es una de las historias más conocidas de nuestro tiempo: el día 26 de abril de 1986, el reactor nº 4 de la central nuclear de Chernóbyl estalló durante el transcurso de una prueba de seguridad mal ejecutada, a consecuencia de 24 horas de manipulaciones insensatas y más de doscientas violaciones del Reglamento de Seguridad Nuclear de la Unión Soviética. Estas acciones condujeron al envenenamiento por xenón del núcleo, llevándolo a un embalamiento neutrónico seguido por una excursión de energía que culminó en dos grandes explosiones a las 01:24 de la madrugada.

Sobre Chernóbyl se han contado muchas mentiras. Y las han contado todos, desde las autoridades soviéticas de su tiempo hasta la industria nuclear occidental, pasando por los propagandistas de todos los signos y la colección de conspiranoicos habituales. Hay una de ellas que me molesta de modo particular, y es esa de que los liquidadores –el casi millón de personas que acudieron a encargarse del problema– eran una horda de pobres ignorantes llevados allí sin saber la clase de monstruo que tenían delante. Y me molesta porque constituye un desprecio a su heroísmo.

Y porque es radicalmente falso. Una turba ignorante no sirve para nada en un accidente tecnológico tan complejo. Los equipos de liquidadores estaban compuestos, sobre todo, por bomberos, científicos y especialistas de la industria nuclear; tropas terrestres y aéreas preparadas para la guerra atómica; e ingenieros de minas, geólogos y mineros del uranio, debido a su amplia experiencia en  la manipulación de estas sustancias. Es necio suponer que esta clase de personas ignoraban los peligros de un reactor nuclear destripado cuyos contenidos ves brillar ante tus ojos en un enorme agujero.

Los liquidadores acudieron, sabían lo que tenían ante sí, y a pesar de ello realizaron su trabajo con enorme valor y responsabilidad. Cientos, miles de ellos, de manera heroica hasta el escalofrío. Los bomberos que se turnaban entre vómitos y diarreas radiológicas para subir al mítico tejado de Chernóbyl, donde había más de 40.000 roentgens/hora, para apagar desde allí los incendios (la radiación ambiental normal son unos 20 microrroentgens/hora). Los pilotos que detenían sus helicópteros justo encima del reactor abierto y refulgente para vaciar sobre él los buckets de arena y arcilla con plomo y boro. Los técnicos y soldados que corrían a toda velocidad por las galerías devastadas cantándose a gritos las lecturas de los contadores Geiger y los cronómetros para romper paredes, restablecer conexiones y bloquear canalizaciones en turnos de cuarenta o sesenta segundos alrededor de la sala de turbinas (20.000 roentgens/hora). Los mineros e ingenieros que trabajaban en túneles subterráneos, inundándose constantemente con agua de siniestro brillo azul, para instalar las tuberías de un cambiador de calor que le robase algo de temperatura al núcleo fundido y radiante a escasos metros de distancia. Los miles de trabajadores y arquitectos que levantaban el sarcófago a su alrededor, retiraban del entorno los escombros furiosamente radioactivos y evacuaban a la población. Salvo a los soldados, sometidos a disciplina militar, a nadie se le prohibía coger el petate e irse si no quería seguir allí; casi nadie lo hizo. Es más: muchos de ellos llegaron como voluntarios desde toda la URSS, especialmente muchos estudiantes y posgraduados de las facultades de física e ingeniería nuclear. Esta fue la clase de hombres y no pocas mujeres que algunos creen o quieren creer una turba ignorante y patética. Esto fueron los liquidadores.

Les llamaban, y se llamaban a sí mismos, los bio-robots, que seguían funcionando cuando el acero cedía y las máquinas fallaban. No lo hicieron por el dinero, ni por la fama, de lo que tuvieron bien poco. Lo hicieron por responsabilidad, por humanidad y porque alguien tenía que hacer el maldito trabajo. Hoy quiero hablar de tres de ellos, que hicieron algo aún más extraordinario en un lugar donde el heroísmo era cosa corriente. Por eso, sólo se me ocurre denominarlos los tres superhéroes de Chernóbyl.

El monstruo del agua que brilla en azul.

Lo único que hay de cierto en estas suposiciones sobre la ignorancia de los liquidadores es que, en las primeras horas, no sabían que había estallado el reactor. Pero no lo sabían porque nadie lo sabía. La misma lógica errónea de los responsables de la instalación que provocó el accidente les hizo creer que había estallado el intercambiador de calor, no el reactor; y así lo informaron tanto al personal que acudía como a sus superiores. Hay una historia un tanto chusca sobre cómo los aviones que llevaban al lugar a destacados miembros de la Academia de Ciencias de la URSS se dieron la vuelta en el aire por órdenes del KGB cuando éste descubrió, a través de su equipo de protección de la central, que había explotado el reactor (además de sus atribuciones de espionaje por el que es tan conocido, el KGB “uniformado” desempeñaba en la Unión Soviética un papel muy parecido al de nuestra Guardia Civil, exceptuando tráfico pero incluyendo la seguridad de las instalaciones radiológicas).

Debido a este motivo, en un primer momento se echaron sobre el agujero millones de litros de agua y nitrógeno líquido, con el propósito de mantener frío y proteger así el reactor que creían a salvo y sellado más allá de las llamas y el denso humo negro. Esto contribuyó a empeorar las consecuencias del siniestro, pues el agua se vaporizaba instantáneamente al tocar el núcleo fundido a más de 2.000 ºC; y salía disparada hacia la estratosfera en forma de grandes nubes de vapor que el viento arrastraría en todas direcciones.

De todos modos, tenía poco arreglo: era preciso apagar los enormes incendios. Cuando el fuego quedó extinguido por fin, no sólo había pasado la contaminación al aire, sino que ahora tenían una gran cantidad de agua acumulada en las piscinas de seguridad bajo el reactor. Estas piscinas de seguridad, conocidas como piscinas de burbujas, se hallaban en dos niveles inferiores y tenían por función contener agua por si fuese preciso enfriar de emergencia el reactor. También servían para condensar vapor y reducir la presión en caso de que se rompiera alguna tubería del circuito primario (de ahí su nombre), junto a un tercer nivel que actuaba de conducción, inmediatamente debajo del reactor. Así, en caso de ruptura de alguna canalización, el vapor se vería obligado a circular por este nivel de conducción y escapar a través de una capa de agua, lo que reduciría su peligrosidad.

Ahora, después de la aniquilación, estas piscinas inferiores estaban llenas a rebosar con agua procedente de las tuberías reventadas del circuito primario y de la utilizada por los bomberos para apagar el incendio y en el vano intento de mantener frío el reactor. Y sobre ellas se encontraba el reactor abierto, fundiéndose lentamente en forma de lava de corio a 1.660 ºC. En cualquier momento podían empezar a caer grandes goterones de esta lava poderosamente radioactiva, o incluso el conjunto completo, provocando así una o varias explosiones de vapor que proyectasen a la atmósfera cientos de toneladas de este corio. Eso habría multiplicado a gran escala la contaminación provocada por el accidente, destruyendo el lugar y afectando gravemente a toda Europa. Además, la mezcla de agua y corio radioactivos escaparían y se infiltrarían al subsuelo, contaminando las aguas subterráneas y poniendo en grave peligro el suministro a la cercana ciudad de Kiev, con dos millones y medio de habitantes, en una especie de síndrome de China.

Se tomó, pues, la decisión de vaciar estas piscinas de manera controlada. En condiciones normales, esto habría sido una tarea fácil: bastaba con abrir sus esclusas mediante una sencilla orden al ordenador SKALA que gestionaba la central, y el agua fluiría con seguridad a un reservorio exterior. Pero con los sistemas de control electrónico destruidos, esto no resultaba posible. De hecho, la única manera de hacerlo ahora era actuando manualmente las válvulas. El problema es que las válvulas estaban bajo el agua, dentro de la piscina, cerca del fondo lleno de escombros altamente radioactivos que la hacían brillar tenuemente en color azul por radiación de Cherenkov. Justo debajo del reactor que se fundía, emitiendo un siniestro brillo rojizo.

Así pues, como las máquinas ya no podían, era trabajo para los bio-robots.Alguien tendría que caminar, un paso detrás del otro, hacia el reactor reventado y ardiente a lo largo de un grisáceo campo de destrucción donde la radioactividad era tan intensa que provocaba un sabor metálico en la boca, confusión en la cabeza y como agujas en la piel. Viendo cómo tus manos se broncean por segundos, como después de semanas bajo el sol. Y luego sumergirse en el agua oleaginosa y de brillo tenuemente azul, con el inestable monstruo radioactivo encima de las cabezas, para abrir las válvulas a mano: una operación difícil y peligrosa incluso en circunstancias normales.

Ese era un viaje sólo de ida.

Al parecer, la decisión sobre quién lo haría se tomó de manera muy simple; con aquella vieja frase que, a lo largo de la historia de la humanidad, siempre bastó a los héroes:

–Yo iré.

Los tres hombres que fueron.

Los dos primeros en ofrecerse voluntarios fueron Alexei Ananenko y Valeriy Bezpalov. Alexei Ananenko era un prestigioso tecnólogo de la industria nuclear soviética, que había participado extensivamente en el desarrollo y construcción del complejo electronuclear de Chernóbyl: cooperó en el diseño de las esclusas y sabía dónde estaban ubicadas exactamente las válvulas. Casado, tenía un hijo. Valeriy Bezpalov era uno de los ingenieros que trabajaban en la central, ocupando un puesto de responsabilidad en el departamento de explotación. Estaba también casado, con una niña y dos niños de corta edad.

Los dos eran ingenieros nucleares. Los dos comprendían más allá de toda duda que se disponían a caminar de cara hacia la muerte.

Mientras se ponían sus trajes de submarinismo sentados en un banco, observaron que necesitarían un ayudante para sujetarles la lámpara subacuática desde el borde de la piscina mientras ellos trabajaban en las profundidades. Y miraron a los ojos a los hombres que tenían alrededor. Entonces uno de ellos, un joven trabajador de la central sin familia llamado Boris Baranov, se alzó de hombros y dijo aquella otra frase que casi siempre ha seguido a la anterior:

–Yo iré con vosotros.

Era media mañana cuando los héroes Alexei Ananenko, Valeriy Bezpalov y Boris Baranov se tomaron un chupito de vodka para darse valor, agarraron las cajas de herramientas y echaron a andar hacia la lava radioactiva en que se había convertido el reactor número 4 del complejo electronuclear de Chernóbyl. Así, sin más.

Ante los ojos encogidos de quienes quedaron atrás, los tres camaradas caminaron los mil doscientos metros que había hasta el nivel –0,5, dicen que conversando apaciblemente entre sí. Qué tal, cuánto tiempo sin verte, qué tal tus hijos, a ti no te conocía, chaval, yo es que no soy de por aquí. O parece que hoy vamos a trabajar un poco juntos, igual podemos acceder mejor por ahí, yo voy a la válvula de la derecha y tú a la de la izquierda, tú ilumínanos desde alláparece que va a llover, ¿no?, E incluso está bien buena la secretaria del ingeniero Kornilov, ¿eh?ya lo creo, menudo meneo le arrearía, pues me parece que este año el Dinamo de Moscú no gana la liga. Esas cosas de las que hablan los bio-robots mientras ven cómo su piel se oscurece lentamente, se les va un poquito la cabeza debido a la ionización de las neuronas y la boca les sabe a uranio cada vez más, conteniendo la náusea, sacudiéndose incómodamente porque es como si un millón de duendes maléficos te estuvieran clavando agujas en la piel. Cinco mil roentgens/hora, llaman a eso.

Y bajo aquel cielo gris y los restos fulgurantes de un reactor nuclear, los héroes Alexei Ananenko y Valeriy Bezpalov se sumergieron en la piscina de burbujas del nivel –0,5, con una radioactividad tan sólida que se podía sentir, mientras su camarada Boris Baranov les sujetaba la lámpara subacuática. Ésta estaba dañada y falló poco después. Desde el exterior, ya nadie les oía ni les veía.

Pero, de pronto, las esclusas comenzaron a abrirse, y un millón de metros cúbicos de agua radioactiva escaparon en dirección al reservorio seguro preparado a tal efecto. Lo habían logrado. Alguien murmuró que los héroes Ananenko, Bezpalov y Baranov acababan de salvar a Europa. Resulta difícil determinar hasta qué punto tenía razón.

Hay versiones contradictorias sobre lo que sucedió después. La más tradicional dice que jamás regresaron, y siguen sepultados allí. La más probable asegura que llegaron a salir de la piscina y celebrar su victoria riendo y abrazándose a los mismísimos pies del monstruo, en el borde de la piscina; e incluso lograron regresar sus cuerpos, aunque no sus vidas. Murieron poco después, de síndrome radioactivo extremo, en hospitales de Kiev y Moscú. Aún otra más, que se me antoja casi imposible, sugiere que Ananenko y Bezpalov perecieron, pero el joven trabajador Baranov pudo sobrevivir y anda o anduvo un tiempo por ahí.

Esta es la historia de Alexei Ananenko, Valeriy Bezpalov y Boris Baranov, los tres superhéroes de Chernóbyl, de quienes se dice que salvaron a Europa o al menos a algún que otro millón de personas en miles de kilómetros a la redonda un frío día de abril. Fueron a la muerte conscientemente, deliberadamente, por responsabilidad y humanidad y sentido del honor, para que los demás pudiésemos vivir. Cuando alguien piense que este género humano nuestro no tiene salvación, siempre puede recordar a hombres como estos y otros cientos o miles por el estilo que también estuvieron por allí. No circulan fotos de ellos, ni han hecho superproducciones de Hollywood, y hasta sus nombres son difíciles de encontrar. Pero hoy, veinticuatro años después, yo brindo en su recuerdo, me cuadro ante su memoria y les doy mil veces las gracias. Por ir.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

*


− tres = cuatro